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Phonons in mixed crystals 

J Monecke 
Department of Physics, Mining Academy of Freiberg, E-v-Cotta-Strasse 4, Freiberg, 
Federal Republic of Germany 

Received 6 September 1990, in final form 6 March 1991 

Abstract. The simple example of phonons in a linear chain of atoms with substitutional 
disorder is reconsidered in order to determine the rearrangements of acoustic and localized 
mode branches with increasing concentration of light impurities. The coherent-potential 
approximation cannot be applied successfully to this problem. A new expression for the self- 
energy of phonons is derived, which is exact in the limits of c+ 0 and c- 1, c being the 
impurity concentration, and which gives reliable results for intermediate c. 

1. Introduction 

Since the famous work of Velickf eta1 [I] it is well known that the coherent-potential 
approximation (CPA) [2] does not correctly describe the spectral densities of elementary 
excitations, e.g. of phonons localized at impurities. Instead of Lorentzian shapes the 
CPA yields half-egg-like shapes for low impurity concentrations. Band tails are missing 
entirely, the peak positions are not well defined and the half-widths are too large. The 
&like shape of the spectral density in the limit of vanishing impurity concentration is 
not reproduced. Densities of states show, in general, the same shortcomings [l]. 

This defect of the CPA becomes pronounced if for example with increasing impurity 
concentration the mode frequencieschange in such a way that the corresponding spectral 
densities penetrate each other. Let us consider as the simplest example the case of light 
substitutional impurities (mass changes only) in a linear chain of atoms with nearest- 
neighbour interaction. For one impurity with a mass defect E = -AMfM > 0, there 
exists an acoustic branch given by w z  = w:,, 4[1 - cos(ka)] and a mode which is 
localized at the impurity at w?oc = wZ,,/(l - E * )  [3]. Both branches are shown in figure 
1. The significance of the wavevector for the local mode branch is given by the Fourier 
transform of the local wavefunction, which contains all k-values. On increase in the 
number of impurities, the mode positions, their intensities and half-widths have to 
change in such a way that, for c = 1, c being the concentration of light impurities, one 
acoustic branch with w2 = wZ,,,[1/(1 - E)] $11 - cos(ka)] results (figure 1). 

It is the aim of tbis paper to determine how the spectral densities of the initial two 
modes (for c = 0) rearrange with increasing c+ 1. The result of the CPA for this case is 
shown in figure 2. The spectral density of the impurity mode shows all the defects 
mentioned above. 

Here we show that the exact knowledge of the Green function in the two l i t s  c = 
0 and c = 1 (one-impurity problems) can be exploited in order to obtain an interpolation 
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Figore 1. Acoustic and localized mode branches for c=O and acoustic mode branch for 
c = 1 for a mass defect off = - A M / M  = 0.6. The arrows indicate the rearrangementswith 
increasing c within the present approximation. 

WlWmox 

Flgure2.Spectralweightsatka=n/2foramassdeteclEof0.6withconcentrationsc=O.l 
and e = 0.05 within the CPA, and c = 0.1 within the present approximation (inset). 
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scheme for all c. This scheme is applied to the linear-chain model. It is demonstrated 
that the result is free of the shortcomings of the CPA and that the rearrangements of the 
phonon modes with c can be determined. 

2. The limiting cases c = 0 and c = 1 

Our aim is to calculate the retarded displacement-displacement Green function GIIp = 
(uI ,  up;  0)) for a linear chain of A atoms of mass M with substitutional light impurities B 
of mass M + A M ,  E = - A M / M  > 0 ,  for all impurity concentrations. uI is the dis- 
placement of the atom in the Ith unit cell, containing one atom only. For simplicity we 
assume a nearest-neighbour interaction which is independent of the types of atom. The 
Green function obeys the equation of motion 

x ( M W 2 6 1 r  - 90. - VIP)G,,(. = 6j1" (1) 
I' 

where 
Zf i f l = l '  

PII, ={-; if - /'I = 1 

else 
and VI,, = M ~ o ~ 6 ~ ~ .  if I is occupied by an impurity (B atom), Vil. being zero otherwise (A 
atoms). 

Introducing the Green function Po. of the unperturbed (c = 0) chain as a solution of 
(1) with Vll. = 0 we obtain 

Gip = PI[' + 'c. P,"V,..pGI-,.. (2) 
,..,I"' 

The averaged Green function Gir is defined as 

and obeys the equation ( ~ I I O .  = Pi,,) 

GI,. = PI,. + PII.V~I.*GI*I~. 
I",?" 

Introducing a single-site self-energy Z as - _. 

GI1. = PiIm + PlpZG,.p 
I" 

we get 

or 
1 ZG = Xc = -'c. V,G,,  
N i  

On the other hand we can write 

(4) 
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with 

and 

1 
GB = - G;; 

NB i E B  

where NA and NB are the numbers of lattice sites occupied by A atoms and B atoms, 
respectively, and the sums are restricted to these sites. 

In a similar way we obtain 

(8) 
1 -E V,,Gii = (1 - c)VAGA + cVBGB 
N ,  

with VA = 0 and V, =  ME^, and from (6) the exact result for the self-energy 

2 = (CMPUzGB/GA)/[(I - C) + CGB/GA]. (9) 

The ratio G,/GA is a still unknown function of c. CA and GB, however, are exactly 
known in the limits c = 0 and c = 1 from the solutions of the corresponding one-impurity 
problems. For one light impurity at the origin we obtain 

Now, Gji = Pii for all lattice sites except for a few in the neighbourhood of i = 0. 
Therefore we obtain CA = P, = Po for the infinite chain N +  m. 

1 
GB =- G ,  = G~ 

NB iEB 

is given by the equation 

Go = Po + P o M ~ ~ 2 G o  

which can be solved to give 

GB = Po/(l  - MEW’PO). 

From (9)-(11) we obtain 

= cMEw2/[1 - (1 - C)MEU*P~] 

which is identical with the result of the averaged t-matrix approximation (ATA) at c 
Ot [4]. 

t The abbreviation ArA is not uniquely used in the literature; see [SI. 



Phonons in mixed crystals 4813 

Po in (12) for the linear-chain model is given by 

where kvaries between -n/u and +./a. Equation (13) can be integrated with the result 
that 

p0 = - W L W ~ )  (14) 

where om,, = V‘@% [3]. 

then is 
The whole analysis can be repeated near the limit c = 1. The result for the self-energy 

X = EW’M - (1 - c)eW2M/(1 + CEW’MQo) (15) 
where 

Qo = Po(M + AM) 

3. Interpolation scheme for intermediate e 

From (12) and (15) the self-energy2 and its first derivative d2/dc are exactly known in 
the limits c = 0 and c = 1 and are given by 

XIo = 0 

(d2/dc)lo = 2’10 EW’M/(I - EW’MPO) (17) 

21, = & W * M  

(dX/dc)l, = X‘ll  = &w’M/(l + EW’MQ,). 

The higher derivatives d22/dc2, d3Z/dc3, . . . at c = 0 and c = 1 are not known. Their 
knowledge would correspond to the solution of infinite two-, three-, . . . impurity 
problems with different impurity distances. 

Theeasiest way toobtain2 at allcis, therefore, to look forafourth-orderdifferential 
equation, which has to be solved under the boundary conditions (17). Such a differential 
equation, of course, never can be exact. Otherwise the mixed-crystal problem could be 
solved exactly. 

As in (fX] we use the exact forms 2 = numerator/denominator = (a + bc + . . .)/ 
(d + ec + . . .) of the self-energy, obtained in section 2, in order to obtain the higher 
derivatives d2X/dc2, d3X/dc3 and d42/dc4. These are found lo be coupled by 

d4X/dc4 = %(d3X:/dc3)’/(d2Z/dc2) (18) 
which is exact near c = 0 (from (12)) and near c = 1 (from (15)). 

As in [&SI we now propose (18) to be valid not only near c = 0 and c = 1 but for all 
c. Equation (18) can be solved under the boundary conditions (17) analytically with the 
result that 

2(c) = (Y + pc + y/(l + SC) (19) 

where 
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LY= X I o  - y 

Equations (19) and (20) constitute an interpolation scheme for the self-energy which 
uses maximally all the exact knowledge that we have-the numerator-over-denominator 
form of the self-energy as well as the expansions of both in c and 1 - cup to first order- 
hence correctly reproducing the limits c -P 0 and c +  1. 

The new interpolation scheme presented here is based on the single-site approxi- 
mations(12) and (15),respectively. It isoften statedin the literature that the bestsingle- 
site approximation is the self-consistent CPA. This statement, however, is a mis- 
understanding of the original reasoning of Velickq ef a1 [I]: there exists an infinite 
number of single-site theories differing in the infinite possible choices of initial mean 
self-energies. It was shown in [l] that all these theories would give identical results if the 
underlying single-site approximation were correct. The best single-site theory, hence, 
would be that which minimizes the difference to the exact result. This, however, has 
never been proved for the self-consistent single-site approximation, the CPA 161. 

4. Results and discussion 

The Fourier transform of the averaged Green function (5 )  is 
~~ 

= I/{MU' ~- (M/z)u~,,,[~ - cos(ka)] - X(U)). (21) 
The spectral weight of (21) is given (up to a factor - l/n) by its imaginary part which can 
easily be calculated using (19) and (20) together with (17). The results for different 
concentrations are given in figure 3 for a mass defect E of 0.6 (and in the inset of figure 

For small concentrations (c = 0.1) (figure l(a)) we obtain Lorentzian-shaped spec- 
tral weights near the expected positions. the acoustic and the localized phonon branches. 
The finite half-widths of these spectral weights indicate that the wavevector k is no longer 
a good quantum number in mixed crystals. With increasing concentration the localized 
phonon branch for small wavevectors k < z/Za decreases in intensity, broadens and 
moves to smaller energies down to U,, of the acoustic branch at c = 0. For k > n/2a 
this branch increases in intensity; it first broadens, then narrows and movesup in energy 
in order to transform into the acoustic mode branch at c = 1. Correspondingly the 
acoustic mode branch for k < n/2a transforms to that at c = 1 whereas the acoustic 
mode branch fork > q'k broadens, moves upwards in energy up to U,,, and vanishes 
in intensity. Thus the upper part of the localized phonon branch (k  > n / k )  and the 
lower part (k < z/2a) of the acoustic branch at c = 0 transform with increasing c to the 
new acoustic branch; the remaining mode parts vanish. This behaviour is indicated 
schematically in figure 1. 

We would like to recall that the normalized spectral density p(o) cannot be obtained 
in the phonon case from a k-summation of the imaginary part of the Fourier transform 
(21) of the displacement-displacement Green function; p ( w )  is connected with a dif- 
ferent Green function (see, e.g., [4] and [9]). Because most numerical results for 
disordered linear chains are obtained for p(o) (see, e.g., [SI) a direct comparison of our 

2). 
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theory with such results is not possible. There is, however, no doubt in the presence of 
band tailsin the numerically obtainedspectra. On the other hand, some sharp structures 
within the impurity hands can be explained only by cluster formations and can never be 
obtained with a single-site theory [lo]. 

In this paper we have given an interpolation scheme for diagonal perturbations only. 
Force constant changes, for example, have not been considered. The generalization to 
non-diagonal perturbations can easily be performed as in the case of electronic properties 
of alloys [ll]. 

In conclusion it can be stated that the interpolation scheme presented here results in 
spectral weights which do not show the shortcomings of those of the CPA and, hence, is 
able to describe the rearrangements of elementary excitation branches even in the case 
oftheirmutua1penetration.Thereasonis that we haveexploitedall theexact knowledge 
about theself-energy: thenumerator-over-denominator formof it givenby thedelinition 
(6) together with the exact equations (7) and (8) as well as the first terms of the series 
expansions of the numerator andof the denominator incand 1 - c,  respectively, known 
from the exactly solvable one-impurity problems. It was demonstrated by the present 
author that the same interpolation schema can also be successfully applied to electronic 
excitations [6] and to the classical electrodynamics of heterogeneous media [7,8]. 
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